Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs.

نویسندگان

  • Keishi Shintomi
  • Mari Iwabuchi
  • Hideaki Saeki
  • Kiyoe Ura
  • Takeo Kishimoto
  • Keita Ohsumi
چکیده

In eukaryotic cells, genomic DNA is primarily packaged into nucleosomes through sequential ordered binding of the core and linker histone proteins. The acidic proteins termed histone chaperones are known to bind to core histones to neutralize their positive charges, thereby facilitating their proper deposition onto DNA to assemble the core of nucleosomes. For linker histones, however, little has been known about the regulatory mechanism for deposition of linker histones onto the linker DNA. Here we report that, in Xenopus eggs, the linker histone is associated with the Xenopus homologue of nucleosome assembly protein-1 (NAP-1), which is known to be a chaperone for the core histones H2A and H2B in Drosophila and mammalian cells [Ito, T., Bulger, M., Kobayashi, R. & Kadonaga, J. T. (1996) Mol. Cell Biol. 16, 3112-3124; Chang, L., Loranger, S. S., Mizzen, C., Ernst, S. G., Allis, C. D. & Annunziato, A. T. (1997) Biochemistry 36, 469-480]. We show that NAP-1 acts as the chaperone for the linker histone in both sperm chromatin remodeling into nucleosomes and linker histone binding to nucleosome core dimers. In the presence of NAP-1, the linker histone is properly deposited onto linker DNA at physiological ionic strength, without formation of nonspecific aggregates. These results strongly suggest that NAP-1 functions as a chaperone for the linker histone in Xenopus eggs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in Xenopus

Linker histone H1 is required for mitotic chromosome architecture in Xenopus laevis egg extracts and, unlike core histones, exhibits rapid turnover on chromatin. Mechanisms regulating the recruitment, deposition, and dynamics of linker histones in mitosis are largely unknown. We found that the cytoplasmic histone chaperone nucleosome assembly protein 1 (Nap1) associates with the embryonic isofo...

متن کامل

Histone Chaperones in the Assembly and Disassembly of Chromatin

Nucleosomes physically block access to the DNA, raising several questions (1) How are new nucleosomes formed in vivo? (2) How are nucleosomes removed to facilitate DNA templated processes? and (3) How are histones restored to the DNA following the completion of those processes? The intrinsic attraction between the negatively charged DNA phosphate backbone and the positively charged lysine and a...

متن کامل

Jcb_201412097 1..10

During mitosis, the duplicated genome undergoes a dramatic structural reorganization, resulting in condensed, resolved chromosomes that can be segregated by the spindle during anaphase. Core histones H2A, H2B, H3, and H4 provide the first level of genome compaction, assembling into stable octameric units around which DNA is encircled to form nucleosomes. Linker histones bind nucleosomes and the...

متن کامل

NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation.

NAP1 (nucleosome assembly protein 1) is a histone chaperone that has been described to bind predominantly to the histone H2A.H2B dimer in the cell during shuttling of histones into the nucleus, nucleosome assembly/remodeling, and transcription. Here it was examined how NAP1 interacts with chromatin fibers isolated from HeLa cells. NAP1 induced a reversible change toward an extended fiber confor...

متن کامل

Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.

We demonstrate using a dinucleosome template that acetylation of the core histones enhances transcription by RNA polymerase III. This effect is not dependent on an increased mobility of the core histone octamer with respect to DNA sequence. When linker histone is subsequently bound, we find both a reduction in nucleosome mobility and a repression of transcription. These effects of linker histon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 23  شماره 

صفحات  -

تاریخ انتشار 2005